Discipline: Actual problems of chemistry of polymer composites

Lecture 15.

Theme: Photocuring Polymer Composites and Methods for Their Obtaining

Objective:

To understand the principles, types, and methods of producing photocuring polymer composites, and to analyze how light-activated curing influences the properties and applications of polymer-based materials.

Key Questions:

- 1. What are photocuring polymer composites, and how do they work?
- 2. What types of polymers and fillers are used in photocuring composites?
- 3. What methods are used to fabricate photocuring polymer composites?
- 4. How does photocuring affect the mechanical and chemical properties of composites?
- 5. What are the practical applications of photocuring polymer composites?

Lecture Content:

- Introduction to Photocuring Polymer Composites:
 - Photocuring polymer composites are materials in which a polymer matrix undergoes polymerization or cross-linking under the action of light (UV, visible, or near-IR).
 - Advantages: rapid curing, energy efficiency, spatial control of polymerization, and ability to form complex shapes.
 - o Common applications: coatings, adhesives, 3D printing, dental materials, and electronic encapsulants.
- Polymer Matrices for Photocuring:
 - o Acrylics: acrylates and methacrylates (monomers and oligomers).
 - o **Epoxy acrylates:** combination of epoxy and acrylic properties.
 - o Vinyl ethers and thiol-ene systems: fast curing, low shrinkage.
- Fillers and Additives:
 - o **Dispersed fillers:** silica, glass, mineral powders for mechanical reinforcement.
 - o **Fibrous fillers:** short glass fibers or carbon fibers for structural reinforcement.

- o **Nanoparticles:** TiO₂, ZnO, or clay for improved thermal, mechanical, and barrier properties.
- o **Photoinitiators:** compounds that generate radicals or cations under light to initiate polymerization.

Methods of Obtaining Photocuring Polymer Composites:

1. UV or Visible Light Curing:

- The composite mixture (monomers + fillers + photoinitiators) is exposed to UV or visible light.
- Radical or cationic polymerization is initiated by the photoinitiator.
- Fast curing (seconds to minutes) suitable for coatings and adhesives.

2. Photolithography / Patterned Curing:

- Light is applied through masks to create patterned or microstructured composites.
- Used in electronics, microfluidics, and biomedical scaffolds.

3. 3D Printing / Stereolithography (SLA) and Digital Light Processing (DLP):

- Layer-by-layer curing of resin containing photoinitiators and fillers.
- Enables **high-resolution**, **complex geometries** for functional components.

4. In-situ Incorporation of Fillers:

- Fillers are dispersed into the photocurable resin before curing.
- Ensures uniform distribution and strong interfacial bonding.

• Factors Affecting Properties:

- o Photoinitiator type and concentration: affects curing rate and depth.
- o Filler type, size, and loading: influences mechanical, thermal, and optical properties.
- o **Light intensity and exposure time:** determine the degree of conversion and final composite properties.

Applications:

- o Coatings and adhesives: rapid curing, durable surfaces.
- Dental materials: fillings, sealants, and bonding agents.
- o **3D-printed structural components:** electronics, prototypes, and biomedical scaffolds.
- **Functional composites:** optical, magnetic, or conductive properties introduced via fillers.

Key Short Theses:

1. Photocuring polymer composites rely on **light-induced polymerization** to rapidly form solid materials.

- 2. Polymer matrices include acrylates, epoxy acrylates, vinyl ethers, and thiol-ene systems.
- 3. Fillers and additives provide mechanical reinforcement, functional properties, and enhanced processability.
- 4. Methods include UV/visible light curing, photolithography, 3D printing, and in-situ filler incorporation.
- 5. Properties are influenced by **photoinitiator type**, **filler characteristics**, **and curing conditions**.
- 6. Applications span coatings, adhesives, dental materials, 3D printing, and functional composites.
- 7. Photocuring enables rapid, energy-efficient, and spatially controlled fabrication of polymer composites.

Control Questions:

- 1. Define photocuring polymer composites and explain their working principle.
- 2. List the main types of photocurable polymer matrices.
- 3. What types of fillers are commonly used in photocuring composites?
- 4. Describe three methods for obtaining photocuring polymer composites.
- 5. How do light intensity and exposure time affect composite properties?
- 6. Give examples of applications in dental materials and 3D printing.
- 7. Why is uniform filler distribution important in photocuring composites?

Recommended references

Main literature:

- 1. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition 2nd Edition / by Manas Chanda, CRC Press; 2nd edition (January 11, 2013)
- 2. Polymer Chemistry 2nd Edition / by Paul C. Hiemenz, Timothy P. Lodge, CRC Press; 2nd edition (February 15, 2007)
- 3. Semchikov Yu.D. High-molecular compounds: Textbook for universities. Moscow: Academy, 2003, 368.
- 4. S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala. Polymer composites. Wiley-VCH, 2012. 829 p.
- 5. Irmukhametova G.S. Fundamentals of polymer composite materials technology: textbook for universities; Al-Farabi Kazakh National University. Almaty: Kazakh University, 2016. 175 p.

Additional literature:

- 1. Polymer composite materials (part 1): a tutorial / L.I. Bondaletova, V.G. Bondaletov. Tomsk: Publishing house of Tomsk Polytechnic University, 2013. 118 p.
- 2. Polymer composite materials: structure, properties, technology. Edited by Berlin A.A. St. Petersburg, Publishing house "Profession", 2008. 560 p.
- 3. Polymer composite materials: structure, properties, technology: a tutorial / M.L. Kerber et al.; under the general editorship of A.A. Berlin. St. Petersburg: Profession, 2009.- 556, [4] p.
- 4. Bataev, A.A. Composite materials. Structure, production, application: a tutorial. manual / A. A. Bataev, V. A. Bataev. M.: Logos, 2006. 397, [3] p. (New University Library).